
Dagster
The Data Orchestrator

Budapest Data Forum 2020
Max Gasner
@gasnerpants

Data Applications

graphs of computations
that consume and produce

data assets

ML Pipeline
ETL

ELT

All are data applications

ML Pipeline
ETL

ELT

In fact, they could be three
components of a broader,

single data application

Data Applications
● Complex and heterogeneous

(personas, tools, teams, environments)

It starts simple...

It starts simple...

It starts simple...

Then the toolset
grows...

It starts simple...

Then the toolset
grows...

It starts simple...

Then the toolset
grows…

Along with teams
and personas

It starts simple...

Then the toolset
grows…

Along with teams
and personas

It starts simple...

Then the toolset
grows…

Along with teams
and personas

It starts simple...

Then the toolset
grows…

Along with teams
and personas

Data Applications
● Complex and heterogeneous

(personas, tools, teams, environments)

Data Applications
● Complex and heterogeneous

(personas, tools, teams, environments)

Develop

Test
Operate

Deploy

Everything is hard

Data Applications
● Complex and heterogeneous

(personas, tools, teams, environments)

Software engineering

● Hard to develop

● Hard to test

● Hard to deploy

● Hard to operate

Data Orchestrator
Combines ideas from several software lineages:

● Workflow engines (Luigi, Airflow): focus on ops

● Dataflow programming: design principles

● ETL environments (Informatica): user focus

● DevOps: full dev cycle

Data Orchestrator
● View data apps as a graph of functional computations

(isolate external state)

● Nodes are computations, edges are data-aware

(connect data to computations)

● Computations produce stream of structured metadata

(platform for tooling)

Programming model

Tooling

Platform

Dagster
● Programming model

> pip install dagster

@solid: a functional

unit of computation in

the orchestration

graph

@solid: a functional

unit of computation in

the orchestration

graph

(Annotated Python

function)

@solid: a functional

unit of computation in

the orchestration

graph

(Annotated Python

function)

Self-documenting

Injected context

parameter isolates

access to external

state

Injected context

parameter isolates

access to external

state

Solids declare their

resource requirements

Injected context

parameter isolates

access to external

state

Solids declare their

resource requirements

External resources are

injected by framework

(so can be mocked)

Solids yield a stream of

structured events

Solids yield a stream of

structured events

Metadata is stored

and available to

tooling

Solids yield a stream of

structured events

Metadata is stored

and available to

tooling

Meaningful side

effects are

represented as assets

Inputs and outputs are

typed

Inputs and outputs are

typed

Config schema is typed

Comment on output type

Inputs and outputs are

typed

Config schema is typed

Solids yield meaningful

outputs to

downstream

computations

Pipeline DSL mimics

function invocation

Pipeline DSL mimics

function invocation

Solid inputs and

outputs are connected

Pipeline DSL mimics

function invocation

Solid inputs and

outputs are connected

Resource

implementations can

be swapped out

Custom types help to

ensure runtime

correctness of inputs

and outputs

@solid
Functional unit of computation

context
Access to external state

@pipeline
Defines data dependencies

@resource
Injected external state

Stream of metadata
Basis for tooling

Custom Types
Correctness guarantees

(and much more…)

Dagster
● Programming model

● Tooling
> pip install dagit && dagit

Tooling
- View of orchestration graph

- Playground with typed config editor

- Operational views: runs, schedules, assets,

longitudinal graphs

Dagit

View of orchestration graph

Dagit

View of orchestration graph

Execution playground with

typed config editor

Dagit

View of orchestration graph

Execution playground with

typed config editor

Operational views of

pipeline runs, schedules,

longitudinal views

Dagster
● Programming model

● Tooling

● Platform for integrations

Built for interoperability

Deep integrations

Easy to surface structured

metadata in Dagster

Pluggable infrastructure

● Deployment (local, cloud, k8s, PaaS, …)

● Storage (local, s3, ...)

● Execution (multiprocess, celery, dask, …)

● Scheduling (cron, Airflow,)

● Loggers (stdout, CloudWatch, Datadog, …)

Dagit
(web)

Postgres S3

Worker

k8s job
per run

Worker

Worker

Redis
Queue

celery

k8s job
per step

Or Helm deploys this:

Scheduler

Contribute!

● Open & active Slack

● Github Issues

● Github Discussions

● Welcoming & growing

community

Programming model

Tooling

Platform

The Data Application Lifecycle

Develop Test Deploy Operate

Thank you!

Budapest Data Forum 2020
Max Gasner
@gasnerpants

