
Dodging the cost of scalability
in data analysis with CPU efficiency

Budapest Data Forum 2020
Dr. Hannes Mühleisen

• Senior Researcher at Centrum Wiskunde &
Informatica in Amsterdam

• Database Architectures Group

• Teaching Big Data™ at University of Amsterdam

• Main Interest: Data Management for Data Science

• @hfmuehleisen
http/hannes.muehleisen.org

2

About me

3

• Communication Overhead

• Coordination Overhead

• Intermediate Reshuffling Overhead

• Sensitivity to Group Cardinality Skew

• Complex failure modes

• Horrible debugging

4

“Distributed Computing”

• Old & busted: Co-locate compuation and storage

• Hadoop

• New & shiny: Separate storage and computation

• Snowflake, Spark + EMR + S3, …

• Problem: Single-thread data read from S3 is slooow

• ~ 20 MB/s

• Solution: Many threads, many VMS, many $$$

5

“Disaggregated Storage”

6

Snowflake Architecture

[Snowflake]

S3

EC2

7

Snowflake Architecture

[Snowflake]

S3

EC2

8

Spark on AWS Architecture

[AWS]

9

Spark on AWS Architecture

[AWS]

• Old & busted: Co-locate compuation and storage

• Hadoop

• New & shiny: Separate storage and computation

• Snowflake, Spark + EMR + S3, …

• Problem: Single-thread data read from S3 is slooow

• ~ 20 MB/s

• Solution: Many threads, many VMS, many $$$

10

“Disaggregated Storage”

• Can have very fast IO with NVMe

• 8-core CPUs commonplace

• 64 GB RAM available in MacBooks

• Need Software! Postgres? MySQL? Pandas? R?

• Too slow!

11

Back to Single Node

12

• DuckDB: The SQLite for Analytics

• Fast vectorized analytical queries

• In-process runtime, no server management

• Fast data transfer

• Single-file storage format

• Simple installation pip install duckdb

• C++11, Free and Open Source (MIT)
www.duckdb.org

13

Last Sunday…

14

Vectorized Processing
Table Result

Single-File Storage

HEADER META COL1 COL2COL2 COL2

database.db
4KB 256KB

CustomerPriceDate Store Product

Column-Store

MVCC
Latest V1 V2

ART Index

Parser

DuckDB Internals

Query Execution Engine

• SQLite/PostgreSQL/MySQL/...: Tuple-At-A-Time

• Pandas/NumPy.R: Column-at-a-time

• DuckDB: Vectorized Processing

15

Tuple-at-a-Time
ResultTable

Vectorized Processing
Table Result

Column-at-a-Time
Table Result

Query Execution Engine

• DuckDB: Vectorized Processing

• Optimized for CPU Cache locality

• SIMD instructions, Pipelining

• Small intermediates
(ideally fit in L1 cache)

16

CPU CORE

MAIN MEMORY (16GB-2TB)
LATENCY: 100NS

L3 CACHE (20MB)
LATENCY: 20NS

L2 CACHE (256KB)
LATENCY: 5NS

L1 CACHE (32KB)
LATENCY: 1NS

Vectorized Processing
Table Result

• How many Amazon nodes does it take to beat a fairly
efficient single-node implementation?

• Hardware: 8-Core Xeon / m5.2xlarge

• Software: Spark vs. DuckDB

• Data: TPC-H SF1000, lineitem table, ~220 GB

• Converted to Parquet files with Spark

• Query:
SELECT sum(l_extendedprice), sum(l_tax),
sum(l_discount) FROM lineitem

17

Science Time

Best case for Spark!

18

Experiment Results
Ti

m
e

(s
)

30

60

90

120

EMR Nodes

8 16 24 32 40

13s

Spark on EMR

19

Experiment Results
Ti

m
e

(s
)

30

60

90

120

EMR Nodes

8 16 24 32 40

DuckDB
Single Node13s 15s

Spark on EMR

• It took 33 nodes for Spark to beat DuckDB on a
single node

• Mostly due to disaggregated storage

• Best case, query trivially parallelizable

• Think of the CO2!

20

Experiment Results

• Don’t write off single node just yet

• Efficient tools can stretch single node far into Big
Data territory

• DuckDB is a novel, CPU-efficient data processing
system

• www.duckdb.org

21
@hfmuehleisen

Conclusion

