
Apache Pulsar, a next-generation streaming engine

Chris Bartholomew, CEO and Founder Kesque



What is Apache Pulsar
● Distributed pub-sub messaging system

○ High throughput, low latency
○ Separates compute from storage
○ Horizontally scalable
○ Streaming and queuing

● Open source 
○ Originally developed at Yahoo!
○ Contributed to the Apache Software Foundation (ASF) in 2016
○ Top-level project
○ 6.6K GitHub stars, over 300 contributors



Multiple message exchange patterns
● Pub-sub (fanout)
● High volume streaming (clickstream, logs, metrics)
● Event driven architectures (event sourcing)
● Work queues (competing consumers)
● Message bus for microservices
● Message retention
● Message replay



Architecture
● Distributed, tiered architecture
● Separates compute from 

storage
● ZooKeeper holds metadata for 

the cluster
● Stateless Broker handles 

producers and consumers
● Storage is handled by Apache 

BookKeeper



Architecture (cont’d)
● BookKeeper distributed, 

append-only log
● Data is broken into segments 

written to multiple bookies
● Producer acknowledged when 

quorum of bookies 
acknowledge

● No single bookie holds entire 
log



Cloud native
● Separation of compute and storage suited to cloud
● Brokers keep no state
● Brokers and BookKeeper nodes are horizontally scalable
● Storage layer (BookKeeper) scales independently of the compute layer 

(Broker)
● Commonly deployed in Kubernetes

○ External access problem solved by Pulsar Proxy



Performance
● Designed for low latency, high throughput
● Data is cached on the broker for “tailing reads”
● Writing and reading is isolated on Bookies using 2 disks (journal and 

ledgers)
● Optimized for flushing each message to disk for maximum durability



Clients
● Apache clients

○ Java
○ Python
○ C++
○ Go (C++ wrapper)
○ Native Go
○ Node.js
○ C#
○ WebSocket

● Community clients
○ .NET
○ Scala
○ Rust
○ HTTP
○ Haskell



Subscriptions
● Durable
● Multiple subscriptions per topic
● Multiple consumers per 

subscription
● Exclusive, failover, shared, 

key_shared
● Skip and rewind in subscription



Partitions
● Not necessarily partitions, but partitions if necessary
● Supports partitions for ordering guarantees at partition level
● Partitions are also unit of parallelism so allow for scaling high volume 

topics
● Partitions hash by key, round robin, or custom
● Can dynamically add partitions to a topic



Multi-tenancy
● Support multiple user groups on single cluster
● Built-in tenant with authorization
● Tenants can be further divided into namespaces with authorization
● Authentication using tokens, client certificates, Athenz (Yahoo! Open 

source)
● Policies defined at namespace level

○ Max producers/consumers
○ Max rate
○ Storage/backlog



Geo-replication
● Built-in geo replication
● Managed through Pulsar CLI 

or REST API
● Multiple topologies

○ Active/standby
○ Active/active

● Shared configuration
● Replicated subscriptions



Tiered Storage
● Pulsar is tiered: compute, storage
● Further tier in storage

○ Offload older messages
○ S3, Google Cloud Storage, HDFS

● Transparent to client
● Supports event sourcing
● Savings:

○ Cloud storage is significantly 
cheaper than SSDs

○ Further tiering (infrequent access, 
glacier)

“We're also looking to Pulsar to solve the 
problem of a never-ending log of 
messages for our large-scale data 
systems where events are expected to 
persist indefinitely and subscribers are 
able to start consuming messages 
retrospectively.”

ThoughtWorks Technology Radar
https://www.thoughtworks.com/radar/pl
atforms/apache-pulsar

https://www.thoughtworks.com/radar/platforms/apache-pulsar
https://www.thoughtworks.com/radar/platforms/apache-pulsar


Advanced Queue Capabilities
● Negative acknowledgment

○ Temporary failure
○ Put message back in topic
○ Consumed by different client

● Dead letter topic
○ Permanent failure
○ Send to topic to not block processing

● Delayed delivery
○ Temporary failure, retry later
○ Scheduled events



Pulsar SQL
● BookKeeper stores all data
● Integration between Presto and BookKeeper
● Perform SQL queries on messages stored on BookKeeper nodes
● Querying data at rest, not data in motion



Schema Registry
● Type saftey is important when producers/consumers are decoupled
● Built-in schema registry
● Clients/REST API can register a schema for a topic

○ Primative: string, integer
○ Complex: Key/Value, Avro, JSON

● Pulsar stores the current schema, ensures producers and consumers 
conform

● Supports schema evolution



Functions
● Can create small functions that run per message
● Java, Python, and Go
● Upload to cluster and connect to topics
● Can do per-message routing, cleaning, enrichment
● Simple, Lambda-like
● For more complex tasks can use stream processing tool (ex Apache 

Flink)



Sinks/Sources (Connectors)
● Connector framework runs inside Pulsar cluster
● Built-in connectors and custom
● Kafka, RabbitMQ
● JDBC to mysql, postgresql, mongoDB, etc
● Change data capture from mysql, postgresql, mongoDB using debezium



Summary
● Apache open source
● Distributed and horizontally scalable
● Cloud/Kubernetes friendly
● Can replace both Kafka and RabbitMQ
● Optimized for high throughput, low latency
● Tiered storage
● Functions and connectors 
● Other feature: multi-tenancy, geo-replication, SQL queries, schema 

registry



Thanks!

Email: chris.bartholomew@kesque.com

Web page: https://pulsar.apache.org/

GitHub: https://github.com/apache/pulsar

Apache Pulsar Slack: https://apache-pulsar.herokuapp.com/ 

mailto:chris.bartholomew@kesque.com
https://pulsar.apache.org/
https://github.com/apache/pulsar
https://apache-pulsar.herokuapp.com/

