
Streaming Analytics
with FlinkSQL

Marton Balassi
Engineering Lead, Streaming Analytics

© 2019 Cloudera, Inc. All rights reserved. 2

About me

@MartonBalassi, mbalassi@cloudera.com

● My claim to fame is that I have written the first line of code of the

Apache Flink Streaming API with Gyula Fora in 2013

● Apache Flink PMC member since 2014

● Worked for Ververica (data Artisans)

● Spent 3 years at Cloudera as a (Senior) Solutions Architect,

worked with ~50 customers

● Currently leading the Streaming Analytics (Apache Flink)

Engineering team at Cloudera

© 2019 Cloudera, Inc. All rights reserved. 3

Flink is a Distributed Data Processing System

© 2019 Cloudera, Inc. All rights reserved. 4

Consistency, Scale, Ecosystem

● Flexible and expressive APIs
● Guaranteed correctness

○ Exactly-once state consistency
○ Event-time semantics

● In-memory processing at massive scale
○ Runs on 100000s of cores
○ Manages 100s TBs of state

● Flexible deployments and large ecosystem
○ Kubernetes, YARN, Docker, HDFS, Kafka, HBase, Kudu, S3, Kinesis...

© 2019 Cloudera, Inc. All rights reserved. 5

APIs

© 2019 Cloudera, Inc. All rights reserved. 6

Layered APIs

© 2019 Cloudera, Inc. All rights reserved. 7

SQL & Table API

● Unified APIs for streaming data and data at rest
○ Run the same query on batch and streaming data
○ ANSI SQL: No stream-specific syntax or semantics!
○ Many common stream analytics use cases supported

SELECT
 userId,
 COUNT(*) AS cnt
 SESSION_START(clicktime, INTERVAL '30' MINUTE)
FROM clicks
GROUP BY
 SESSION(clicktime, INTERVAL '30' MINUTE),
 userId

Count clicks per user and session (defined
by 30 min. gap of inactivity).

© 2019 Cloudera, Inc. All rights reserved. 8

DataStream API

// a stream of website clicks
DataStream<Click> clicks = ...

DataStream<Tuple2<String, Long>> result = clicks
 // project clicks to userId and add a 1 for counting
 .map(
 // define function by implementing the MapFunction interface.
 new MapFunction<Click, Tuple2<String, Long>>() {
 @Override
 public Tuple2<String, Long> map(Click click) {
 return Tuple2.of(click.userId, 1L);
 }
 })
 // key by userId (field 0)
 .keyBy(0)
 // define session window with 30 minute gap
 .window(EventTimeSessionWindows.withGap(Time.minutes(30L)))
 // count clicks per session. Define function as lambda function.
 .reduce((a, b) -> Tuple2.of(a.f0, a.f1 + b.f1));

Count clicks per user and session (defined
by 30 min. gap of inactivity).
Same as the previous SQL query.

© 2019 Cloudera, Inc. All rights reserved. 9

Demo

© 2019 Cloudera, Inc. All rights reserved. 10

Cloudera Flink Tutorials

https://github.com/cloudera/flink-tutorials

https://github.com/cloudera/flink-tutorials

© 2019 Cloudera, Inc. All rights reserved. 11

Next steps

© 2019 Cloudera, Inc. All rights reserved. 12

Next steps for FlinkSQL

● REST endpoint (Logical equivalent for JDBC in streaming)

● Visual editor

● Unified catalog integration

○ Hive

○ Schema Registry

○ ...

At least the ones I am most excited about :-)

© 2019 Cloudera, Inc. All rights reserved. 13

Road to StreamSQL
Democratizing Stream Processing

USE CATALOG REGISTRY;

SELECT
 TUMBLE_END(eventTime, INTERVAL '10' MINUTES)
 AS windowEnd,
 kioskHost,
 COUNT(*) AS numErrors,
 FIRST_VALUE(event) AS sample
FROM
 kiosk_events_raw_sfo
WHERE
 event LIKE '%ERROR%'
GROUP BY
 kioskHost,
 TUMBLE_END(eventTime, INTERVAL '10' MINUTES);

Let us compute the number of errors
per host for each 10 minute window

14

SQL API extensions

table Transactions

transactionId: BIGINT
atmId: BIGINT
lon: DOUBLE
lat: DOUBLE
transactionTime: TIMESTAMP

Let’s detect peak transaction times
in each area via Flink StreamSQL
for our ATMs.

15

Helper View: Statistics per Area

CREATE VIEW TransactionsInArea AS

SELECT

toAreaId(lat, lon) AS area,

COUNT(DISTINCT transactionId) AS transactionCount,

TUMBLE_ROWTIME(transactionTime, INTERVAL '30' MINUTE) AS rowTime,

TUMBLE_START(transactionTime, INTERVAL '30' MINUTE) AS startTime,

TUMBLE_END(transactionTime, INTERVAL '30' MINUTE) AS endTime

FROM

Transactions

GROUP BY

toAreaId(lat, lon),

TUMBLE(transactionTime, INTERVAL '30' MINUTE)

16

Detect Peak Hours - V shape

SELECT * FROM TransactionsInArea MATCH_RECOGNIZE(

 PARTITION BY area ORDER BY rowTime

 MEASURES

 FIRST(UP.startTime) as peakStart,

 LAST(DOWN.endTime) AS peakEnd,

 SUM(UP.transactionCount) + SUM(DOWN.transactionCount) AS transactionSum

 AFTER MATCH SKIP PAST LAST ROW

 PATTERN (UP{4,} DOWN{2,} E)

 DEFINE

 UP AS UP.transactionCount > LAST(UP.transactionCount, 1) OR

 LAST(UP.transactionCount, 1) IS NULL,

 DOWN AS DOWN.transactionCount < LAST(DOWN.transactionCount, 1) OR

 LAST(DOWN.transactionCount, 1) IS NULL,

 E AS E.rideCount > LAST(DOWN.transactionCount)

)

