Data-aware execution and
visualization in Spark

Zoltan Zvara
zoltan.zvara@sztaki.hu

@ MTA SZTAKI
-

>

ERICSSON

@ MTA SZTAKI

Introduction

* Hungarian Academy of Sciences, Institute for Computer Science and
Control (MTA SZTAKI)

e Research institute with strong industry ties
* Big Data projects using Spark, Flink, Couchbase, Hadoop YARN etc.

* Multiple telco use cases lately, with challenging data volume and
distribution

Agenda

* Our data-skew story
* Problem definitions & aims

* Dynamic Repartitioning
* Architecture
 Component breakdown
e Repartitioning mechanism
* Benchmark results

* Tracing
* \/isualization
* Conclusion

@ MTA SZTAKI

Motivation

* We have developed an application aggregating telco data that tested
well on toy data

* When deploying it against the real dataset the application seemed
healthy

* However it could become surprisingly slow or even crash
* What did go wrong? .

Our data-skew story

* We have use-cases when map-side combine is not an option:
groupBy, join

* 80% of the traffic generated by 20% of the communication towers
* Most of our data is 80—-20 rule

@MTASZTAKI
The problem

* Using default hashing is not going to distribute the data uniformly

* Some unknown partition(s) to contain a lot of records on the reducer
side

* Slow tasks will appear stage
. . . . boundary
* Data distribution is not known B & shuffle_z [sow tosk
in advance - & B
"
. ”
* ,Concept drifts” are common . :g<\ slow task

even partitioning skewed data

@ MTA SZTAKI
Aim

Generally, make Spark a data-aware distributed data-processing framework

* Collect information about the data-characteristics on-the-fly
 Partition the data as uniformly as possible on-the-fly
* Handle arbitrary data distributions
* Trace data-points throughout the execution (service co-location)
* Visualize physical plan & execution
* Should not require user-guidance

spark.repartitioning = true

Architecture

global key
distribution &

/ statistics

collect to master @ @ redistribute new
hash @

approximate
local key
distribution &
statistics

Driver perspective

* RepartitioningTrackerMaster part of SparkEnv

* Listens to job & stage submissions

* Holds a variety of repartitioning strategies for each job & stage
* Decides when & how to (re)partition

Executor perspective

* RepartitioningTrackerWorker partof SparkEnv

e Duties:

e Stores ScannerStrategies (Scanner included) received from the RTM

* |nstantiates and binds Scanners to TaskMetrics (where data-
characteristics is collected)

* Defines an interface for Scanners to send DataCharacteristics backto
the RTM

Scalable sampling

* Key-distributions are approximated with a strategy, that is
* not sensitive to early or late concept drifts,
* lightweight and efficient,
 scalable by using a backoff strategy

sampling rate of s; sampling rate of s; /b sampling rate of s;,; /b

truncate -
D E

increase by s;

counters l

frequency

frequency
frequency

keys keys B keys T

@ MTA SZTAKI

Complexity-sensitive sampling

* Reducer run-time can highly correlate with the computational
complexity of the values for a given key

 Calculating object size is costly in JVM and in some cases shows little
correlation to computational complexity (function on the next stage)

* Solution:
* If the user object is Weightable, use complexity-sensitive sampling
* When increasing the counter for a specific value, consider its complexity

@ MTA SZTAKI

Scalable sampling in numbers

* |[n Spark, it has been implemented with Accumulators
* Not so efficient, but we wanted to implement it with minimal impact on the existing
code
* Optimized with micro-benchmarking

* Main factors:
e Sampling strategy - aggressiveness (initial sampling ratio, back-off factor, etc...)
* Complexity of the current stage (mapper)

e Current stage’s runtime:
* When used throughout the execution of the whole stage it adds 5-15% to runtime

» After repartitioning, we cut out the sampler’s code-path; in practice,
it adds 0.2-1.5% to runtime

Scanner

* Instantiated for each task before the executor starts them
* Different implementations: Throughput, Timed, Histogram

* ScannerStrategy defines:
 when to send to the RTM,
* histogram-compaction level.

@ MTA SZTAKI

Decision to repartition

* RepartitioningTrackerMaster can use different decision
strategies:
* number of local histograms needed,
 global histogram’s distance from uniform distribution,
* preferences in the construction of the new hash function.

Construction of the new hash function

hash a key here with the probability
proportional to the remaining space to reach [

_Illlllll-
'’l Y J\ Y

cut, - single-key cut cut,, - probabilistic cut cut, - uniform distribution

| l
|

top prominent keys hashed

New hash function in numbers

* More complex than a hashCode
* We need to evaluate it for every record

* Micro-benchmark (for example String):
* Number of partitions: 512
 HashPartitioner: AVG time to hash a record is 90.033 ns
 KeyIsolatorPartitioner: AVG time to hash a record is 121.933 ns

* In practice it adds negligible overhead, under 1%

Repartitioning

* Reorganize previous naive hashing
e Usually happens in-memory

* In practice, adds additional 1-8% overhead (usually the lower end),
based on:
* complexity of the mapper,
* length of the scanning process.

More numbers (groupBy)

MusicTimeseries — groupBy on tags from a listenings-stream

4 38% reduction
134M —

over-partitioning overhead
& blind scheduling
64% reduction

J/naive

92M

Dynamic Repartitioning

83M —+
observed 3% map-side overhead

size of the biggest partition

v

| | |
10 17 200

number of partitions

400

More numbers (join)

* Joining tracks with tags
* Tracks dataset is skewed
 Number of partitions is set to 33

* Naive:
* size of the biggest partition = 4.14M
* reducer’s stage runtime = 251 seconds

* Dynamic Repartitioning
* size of the biggest partition = 2.01M
* reducer’s stage runtime = 124 seconds
* heavy map, only 0.9% overhead

4.5

3.5

2.5

1.5

[EEY

0.5

Partition sizes

H Naive H Dynamic Repartitioning

@ MTA SZTAKI

Tracing

Goal: capture and record a data-point’s lifecycle throughout the whole
execution

Rewritten Spark’s core to handle wrapped data-points.

Wrapper data-point :

T -
: T - Boolean
T — Iterable[U]

Traceables in Spark

Each record is a Traceable object (a Wrapper implementation).

Apply function on payload and report/build trace.

spark.wrapper.class = com.ericsson.ark.spark.Traceable

Traceable data-point : T

apply £
trace : Trace payload : T f.
f

T -
: T - Boolean
T — Iterable[U]

Tracing implementation

Capture trace informations (deep profiling):
* by reporting to an external service;
 piggyback aggregated trace routes on data-points.

T T:4 T1z e T; can be any Spark operator

10
‘\ Ty Te T » we attach useful metrics to edges
T, '/.T‘\ﬁ‘ 13 and vertices (current load, time
2 spent at task)
* we lose record-by-record
T3 M Ts\‘ relationships here

Iy

Spark REST AP|

* New metrics are available through the REST API

* Added new queries to the REST API, for example:
,what happened in the last 3 second?”

e BlockFetches are collected to ShuffleReadMetrics

recordsRead: 8399,

dataCharacteristics: {
3424: 19.75,
115752: 32.25,
204718: 19.75,
254186: 17.25

@ MTA SZTAKI

remoteBlocksFetched: @,

remoteBlockFetchInfos: [],

localBlocksFetched: 18,

localBlockFetchInfos: [

- {
- blockId: {
shuffleld: &,
mapId: 0,
reduceld: 7,
shuffle: true,
rdd: false,
broadcast: false
}J
bytes: 871162

- blockId: {
shuffleld: &,
mapId: 1,
reduceld: 7,
shuffle: true,
rdd: false,
broadcast: false

}J
bytes: 872696

@ MTA SZTAKI

xecution visualization of Spark jobs

R —
CHANGE
. VIEW
ELAPSED TiMe s oti ieti
eo1ive 4 min, 45 sec distinct distinct colle
l nodes s part 1
3 executors
4 runn
104 completed tasks distinct distinct
0 failed [

9s
distinct
pan 2
o 6s
distinct
pan B

Stage 15

L 6s
4s
nct
part
o 6s 6s
distinct lle
pan pan 4

2
3

Stage 12 Stage 13 Stage 14 Stage 16 Stage 17

8s 3s
distinct distinct collect
part 1 =t =
- 9s .
distinct distinct

textFile gy textFile pymap gy distinct collect 9 distinct 105T 1803 5 2] - ——) distinct) collect

pat O

9s 8s
distinct 1887.7 kB distinct ~— EYSSE— . collect

collect

N
l l
[2] w

10s
distinct 1831.8 kB distinct collect

rs M
Py
0w

6s

r

- % R
-
-
-
-
-~

4s 6s 9s
distinct collect distinct 1816.6 kB distinct collect

10s
distinct

pan &

- 10s
1 4 pan 3
e 8s o 3s 9s o 10s 7 o 15s
distinct distinct collect distinct distinct collect
part O part 1 part O part 1 part 2 par 1
10s 4s a5 8s J 10s
collect distinct 1824.4 kB distinct collect
pan 5 pan 5 pat 3 i B 4 pan 4

- 29 sec

Stage 1

<

heavy keys create
heavy partitions (slow tasks)

heavy is alone,
size of the biggest partition
is minimized

Stage 1

106344

@ MTA SZTAKI

Conclusion

* Our Dynamic Repartitioning can handle data skew dynamically, on-
the-fly on any workload and arbitrary key-distributions

* With very little overhead, data skew can be handled in a natural &
general way

* Tracing can help us to improve the co-location of related services

* Visualizations can aid developers to better understand issues and
bottlenecks of certain workloads

* Making Spark data-aware pays off

Thank you for your attention

Zoltan Zvara
zoltan.zvara@sztaki.hu

@ MTA SZTAKI
-

>

ERICSSON

