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Introduction

* Hungarian Academy of Sciences, Institute for Computer Science and
Control (MTA SZTAKI)

e Research institute with strong industry ties
* Big Data projects using Spark, Flink, Couchbase, Hadoop YARN etc.

* Multiple telco use cases lately, with challenging data volume and
distribution
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Motivation

* We have developed an application aggregating telco data that tested
well on toy data

* When deploying it against the real dataset the application seemed
healthy

* However it could become surprisingly slow or even crash
* What did go wrong? .




Our data-skew story

* We have use-cases when map-side combine is not an option:
groupBy, join

* 80% of the traffic generated by 20% of the communication towers
* Most of our data is 80—-20 rule
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The problem

* Using default hashing is not going to distribute the data uniformly

* Some unknown partition(s) to contain a lot of records on the reducer
side

* Slow tasks will appear stage
. . . . boundary
* Data distribution is not known B & shuffle_z [ sow tosk
in advance - & B
"
. ”
* ,Concept drifts” are common . :g<\ slow task

even partitioning skewed data
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Aim

Generally, make Spark a data-aware distributed data-processing framework

* Collect information about the data-characteristics on-the-fly
 Partition the data as uniformly as possible on-the-fly
* Handle arbitrary data distributions
* Trace data-points throughout the execution (service co-location)
* Visualize physical plan & execution
* Should not require user-guidance

spark.repartitioning = true
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Driver perspective

* RepartitioningTrackerMaster part of SparkEnv

* Listens to job & stage submissions

* Holds a variety of repartitioning strategies for each job & stage
* Decides when & how to (re)partition



Executor perspective

* RepartitioningTrackerWorker partof SparkEnv

e Duties:

e Stores ScannerStrategies (Scanner included) received from the RTM

* |nstantiates and binds Scanners to TaskMetrics (where data-
characteristics is collected)

* Defines an interface for Scanners to send DataCharacteristics backto
the RTM



Scalable sampling

* Key-distributions are approximated with a strategy, that is
* not sensitive to early or late concept drifts,
* lightweight and efficient,
 scalable by using a backoff strategy

sampling rate of s; sampling rate of s; /b sampling rate of s;,; /b
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Complexity-sensitive sampling

* Reducer run-time can highly correlate with the computational
complexity of the values for a given key

 Calculating object size is costly in JVM and in some cases shows little
correlation to computational complexity (function on the next stage)

* Solution:
* If the user object is Weightable, use complexity-sensitive sampling
* When increasing the counter for a specific value, consider its complexity
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Scalable sampling in numbers

* |[n Spark, it has been implemented with Accumulators
* Not so efficient, but we wanted to implement it with minimal impact on the existing
code
* Optimized with micro-benchmarking

* Main factors:
e Sampling strategy - aggressiveness (initial sampling ratio, back-off factor, etc...)
* Complexity of the current stage (mapper)

e Current stage’s runtime:
* When used throughout the execution of the whole stage it adds 5-15% to runtime

» After repartitioning, we cut out the sampler’s code-path; in practice,
it adds 0.2-1.5% to runtime



Scanner

* Instantiated for each task before the executor starts them
* Different implementations: Throughput, Timed, Histogram

* ScannerStrategy defines:
 when to send to the RTM,
* histogram-compaction level.
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Decision to repartition

* RepartitioningTrackerMaster can use different decision
strategies:
* number of local histograms needed,
 global histogram’s distance from uniform distribution,
* preferences in the construction of the new hash function.



Construction of the new hash function

hash a key here with the probability
proportional to the remaining space to reach [
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New hash function in numbers

* More complex than a hashCode
* We need to evaluate it for every record

* Micro-benchmark (for example String):
* Number of partitions: 512
 HashPartitioner: AVG time to hash a record is 90.033 ns
 KeyIsolatorPartitioner: AVG time to hash a record is 121.933 ns

* In practice it adds negligible overhead, under 1%



Repartitioning

* Reorganize previous naive hashing
e Usually happens in-memory

* In practice, adds additional 1-8% overhead (usually the lower end),
based on:
* complexity of the mapper,
* length of the scanning process.



More numbers (groupBy)

MusicTimeseries — groupBy on tags from a listenings-stream

4 38% reduction
134M —

over-partitioning overhead
& blind scheduling
64% reduction

J/naive

92M

Dynamic Repartitioning

83M —+
observed 3% map-side overhead

size of the biggest partition
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More numbers (join)

* Joining tracks with tags
* Tracks dataset is skewed
 Number of partitions is set to 33

* Naive:
* size of the biggest partition = 4.14M
* reducer’s stage runtime = 251 seconds

* Dynamic Repartitioning
* size of the biggest partition = 2.01M
* reducer’s stage runtime = 124 seconds
* heavy map, only 0.9% overhead
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Tracing

Goal: capture and record a data-point’s lifecycle throughout the whole
execution

Rewritten Spark’s core to handle wrapped data-points.

Wrapper data-point :

T -
: T - Boolean
T — Iterable[U]



Traceables in Spark

Each record is a Traceable object (a Wrapper implementation).

Apply function on payload and report/build trace.

spark.wrapper.class = com.ericsson.ark.spark.Traceable

Traceable data-point : T

apply £
trace : Trace payload : T f.
f

T -
: T - Boolean
T — Iterable[U]



Tracing implementation

Capture trace informations (deep profiling):
* by reporting to an external service;
 piggyback aggregated trace routes on data-points.

T T:4 T1z e T; can be any Spark operator

10
‘\ Ty Te T » we attach useful metrics to edges
T, '/.T‘\ﬁ‘ 13 and vertices (current load, time
2 spent at task)
* we lose record-by-record
T3 M Ts\‘ relationships here

Iy



Spark REST AP|

* New metrics are available through the REST API

* Added new queries to the REST API, for example:
,what happened in the last 3 second?”

e BlockFetches are collected to ShuffleReadMetrics

recordsRead: 8399,

dataCharacteristics: {
3424: 19.75,
115752: 32.25,
204718: 19.75,
254186: 17.25
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remoteBlocksFetched: @,

remoteBlockFetchInfos: [ ],

localBlocksFetched: 18,

localBlockFetchInfos: [

- {
- blockId: {
shuffleld: &,
mapId: 0,
reduceld: 7,
shuffle: true,
rdd: false,
broadcast: false
}J
bytes: 871162

- blockId: {
shuffleld: &,
mapId: 1,
reduceld: 7,
shuffle: true,
rdd: false,
broadcast: false

}J
bytes: 872696
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xecution visualization of Spark jobs
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Conclusion

* Our Dynamic Repartitioning can handle data skew dynamically, on-
the-fly on any workload and arbitrary key-distributions

* With very little overhead, data skew can be handled in a natural &
general way

* Tracing can help us to improve the co-location of related services

* Visualizations can aid developers to better understand issues and
bottlenecks of certain workloads

* Making Spark data-aware pays off
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