
Data-aware execution and 
visualization in Spark

Zoltán Zvara
zoltan.zvara@sztaki.hu



Introduction

• Hungarian Academy of Sciences, Institute for Computer Science and 
Control (MTA SZTAKI)

• Research institute with strong industry ties

• Big Data projects using Spark, Flink, Couchbase, Hadoop YARN etc.

• Multiple telco use cases lately, with challenging data volume and 
distribution
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Motivation

• We have developed an application aggregating telco data that tested 
well on toy data

• When deploying it against the real dataset the application seemed 
healthy

• However it could become surprisingly slow or even crash

• What did go wrong? 



Our data-skew story

• We have use-cases when map-side combine is not an option:
groupBy, join

• 80% of the traffic generated by 20% of the communication towers

• Most of our data is 80–20 rule



The problem

• Using default hashing is not going to distribute the data uniformly

• Some unknown partition(s) to contain a lot of records on the reducer 
side

• Slow tasks will appear

• Data distribution is not known
in advance

• „Concept drifts” are common
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Aim

Generally, make Spark a data-aware distributed data-processing framework

• Collect information about the data-characteristics on-the-fly

• Partition the data as uniformly as possible on-the-fly

• Handle arbitrary data distributions

• Trace data-points throughout the execution (service co-location)

• Visualize physical plan & execution

• Should not require user-guidance

spark.repartitioning = true
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Driver perspective

• RepartitioningTrackerMaster part of SparkEnv

• Listens to job & stage submissions

• Holds a variety of repartitioning strategies for each job & stage

• Decides when & how to (re)partition



Executor perspective

• RepartitioningTrackerWorker part of SparkEnv

• Duties:
• Stores ScannerStrategies (Scanner included) received from the RTM

• Instantiates and binds Scanners to TaskMetrics (where data-
characteristics is collected)

• Defines an interface for Scanners to send DataCharacteristics back to 
the RTM



Scalable sampling

• Key-distributions are approximated with a strategy, that is
• not sensitive to early or late concept drifts,

• lightweight and efficient,

• scalable by using a backoff strategy
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Complexity-sensitive sampling

• Reducer run-time can highly correlate with the computational 
complexity of the values for a given key

• Calculating object size is costly in JVM and in some cases shows little 
correlation to computational complexity (function on the next stage)

• Solution:
• If the user object is Weightable, use complexity-sensitive sampling

• When increasing the counter for a specific value, consider its complexity



Scalable sampling in numbers

• In Spark, it has been implemented with Accumulators
• Not so efficient, but we wanted to implement it with minimal impact on the existing 

code

• Optimized with micro-benchmarking

• Main factors:
• Sampling strategy - aggressiveness (initial sampling ratio, back-off factor, etc…)

• Complexity of the current stage (mapper)

• Current stage’s runtime:
• When used throughout the execution of the whole stage it adds 5-15% to runtime

• After repartitioning, we cut out the sampler’s code-path; in practice,
it adds 0.2-1.5% to runtime



Scanner

• Instantiated for each task before the executor starts them

• Different implementations: Throughput, Timed, Histogram

• ScannerStrategy defines:
• when to send to the RTM,

• histogram-compaction level.



Decision to repartition

• RepartitioningTrackerMaster can use different decision 
strategies:
• number of local histograms needed,

• global histogram’s distance from uniform distribution,

• preferences in the construction of the new hash function.



Construction of the new hash function

𝑐𝑢𝑡𝑐 - single-key cut

hash a key here with the probability
proportional to the remaining space to reach 𝑙

𝑐𝑢𝑡𝑢 - uniform distribution

top prominent keys hashed

𝑙

𝑐𝑢𝑡𝑝 - probabilistic cut



New hash function in numbers

• More complex than a hashCode

• We need to evaluate it for every record

• Micro-benchmark (for example String):
• Number of partitions: 512

• HashPartitioner: AVG time to hash a record is 90.033 ns

• KeyIsolatorPartitioner: AVG time to hash a record is 121.933 ns

• In practice it adds negligible overhead, under 1%



Repartitioning

• Reorganize previous naive hashing

• Usually happens in-memory

• In practice, adds additional 1-8% overhead (usually the lower end), 
based on:
• complexity of the mapper,

• length of the scanning process.



More numbers (groupBy)

MusicTimeseries – groupBy on tags from a listenings-stream
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More numbers (join)

• Joining tracks with tags

• Tracks dataset is skewed

• Number of partitions is set to 33

• Naive:
• size of the biggest partition = 4.14M
• reducer’s stage runtime = 251 seconds

• Dynamic Repartitioning
• size of the biggest partition = 2.01M
• reducer’s stage runtime = 124 seconds
• heavy map, only 0.9% overhead



Tracing

Goal: capture and record a data-point’s lifecycle throughout the whole 
execution

Rewritten Spark’s core to handle wrapped data-points.

Wrapper data-point : T

payload : T 𝑓 ∶ 𝑇 → 𝑈
𝑓 ∶ 𝑇 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛
𝑓 ∶ 𝑇 → 𝐼𝑡𝑒𝑟𝑎𝑏𝑙𝑒 𝑈
…

apply



Traceables in Spark

Each record is a Traceable object (a Wrapper implementation).

Apply function on payload and report/build trace.

spark.wrapper.class = com.ericsson.ark.spark.Traceable

Traceable data-point : T

payload : T 𝑓 ∶ 𝑇 → 𝑈
𝑓 ∶ 𝑇 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛
𝑓 ∶ 𝑇 → 𝐼𝑡𝑒𝑟𝑎𝑏𝑙𝑒 𝑈
…

apply
trace : Trace



Tracing implementation

Capture trace informations (deep profiling):

• by reporting to an external service;

• piggyback aggregated trace routes on data-points.
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• 𝑇𝑖 can be any Spark operator
• we attach useful metrics to edges

and vertices (current load, time
spent at task)

• we lose record-by-record
relationships here



Spark REST API

• New metrics are available through the REST API

• Added new queries to the REST API, for example:
„what happened in the last 3 second?”

• BlockFetches are collected to ShuffleReadMetrics



Execution visualization of Spark jobs





Repartitioning in the visualization

heavy keys create
heavy partitions (slow tasks)

heavy is alone,
size of the biggest partition

is minimized



Conclusion

• Our Dynamic Repartitioning can handle data skew dynamically, on-
the-fly on any workload and arbitrary key-distributions

• With very little overhead, data skew can be handled in a natural & 
general way

• Tracing can help us to improve the co-location of related services

• Visualizations can aid developers to better understand issues and 
bottlenecks of certain workloads

• Making Spark data-aware pays off



Thank you for your attention

Zoltán Zvara
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