
MARK RITTMAN, COO, RITTMAN MEAD BUDAPEST DATA FORUM, JUNE 2016

SQL-ON-HADOOP FOR ANALYTICS + BI:  
WHAT ARE MY OPTIONS, WHAT’S THE FUTURE?

info@rittmanmead.com www.rittmanmead.com @rittmanmead 2

•Many customers and organisations are now running initiatives around “big data”

•Some are IT-led and are looking for cost-savings around data warehouse storage + ETL

•Others are “skunkworks” projects in the marketing department that are now scaling-up

•Projects now emerging from pilot exercises

•And design patterns starting to emerge

Many Organisations are Running Big Data Initiatives

info@rittmanmead.com www.rittmanmead.com @rittmanmead

Highly Scalable (and Affordable) Cluster Computing

•Enterprise High-End RDBMSs such as Oracle can scale into the petabytes, using clustering

‣Sharded databases (e.g. Netezza) can scale further but with complexity / single workload trade-offs

•Hadoop was designed from outside for massive horizontal scalability - using cheap hardware

•Anticipates hardware failure and makes multiple copies of data as protection

•More nodes you add, more stable it becomes

•And at a fraction of the cost of traditional 
RDBMS platforms

info@rittmanmead.com www.rittmanmead.com @rittmanmead

•We can now affordably create a single, massive archive of all our corporate data

•Separate to our OLTP and operational BI tools

•Leave it stored at the individual transaction level

•And then run multiple compute frameworks on it

‣SQL queries through Hive, Impala etc

‣Data processing using Spark, MR

‣Graph Analysis, etc

4

One Platform, Multiple Processing Frameworks

Hadoop Data Lake

Webserver 
Log Files (txt)

Social Media  
Logs (JSON)

DB Archives 
(CSV)

Sensor Data  
(XML)

`Spatial & Graph  
(XML, txt)

IoT Logs 
(JSON, txt)

Chat Transcripts 
(Txt)

DB Transactions 
(CSV, XML)

Blogs, Articles 
(TXT, HTML)

Raw Data Processed Data

NoSQL Key-Value  
Store DB Tabular Data  

(Hive Tables)

Aggregates 
(Impala Tables) NoSQL Document  

Store DB

info@rittmanmead.com www.rittmanmead.com @rittmanmead 5

•Typical implementation of Hadoop and big data in an analytic context is the “data lake”

•Additional data storage platform with cheap storage, flexible schema support + compute

•Data lands in the data lake or reservoir in raw form, then minimally processed

•Data then accessed directly by “data scientists”, or processed further into DW

In the Context of BI & Analytics : The Data Reservoir

Data	Transfer Data	Access

Data	Factory Data	Reservoir

Business	
Intelligence	Tools

Hadoop	Platform

File	Based	
Integration

Stream	
Based	

Integration

Data	streams

Discovery	&	Development	Labs
Safe	&	secure	Discovery	and	Development	

environment

Data	sets	and	
samples

Models	 and	
programs

Marketing	/
Sales	Applications

Models

Machine
Learning

Segments

Operational	Data

Transactions

Customer
Master	ata

Unstructured	Data

Voice	+	Chat	
Transcripts

ETL	Based
Integration

Raw	
Customer	Data

Data	stored	in	
the	original	

format	(usually	
files)		such	as	
SS7,	ASN.1,	
JSON	etc.

Mapped	
Customer	Data

Data	sets	
produced	by	
mapping	and	
transforming	
raw	data

info@rittmanmead.com www.rittmanmead.com @rittmanmead

•Programming model for processing large data sets in parallel on a cluster

•Not specific to a particular language, but usually written in Java

• Inspired by the map and reduce functions commonly used in functional programming

‣Map() performs filtering and sorting

‣Reduce() aggregates the output of mappers

‣and a Shuffle() step to redistribute output by keys

•Resolved several complications of distributed computing:

‣Allows unlimited computations on unlimited data

‣Map and reduce functions can be easily distributed

‣Originated at Google; Hadoop was Yahoo’s open-source 
implementation of MapReduce, + two are synonymous

MapReduce - The Original Big Data Query Framework

Mapper
Filter, Project

Mapper
Filter, Project

Mapper
Filter, Project

Reducer
Aggregate

Reducer
Aggregate

Output  
One HDFS file per reducer, 
in a directory

info@rittmanmead.com www.rittmanmead.com @rittmanmead 7

•Original developed at Facebook, now foundational within the Hadoop project

•Allows users to query Hadoop data using SQL-like language

•Tabular metadata layer that overlays files, can interpret semi-structured data (e.g. JSON)

•Generates MapReduce code to return required data

•Extensible through SerDes and Storage Handlers

•JDBC and ODBC drivers for most platforms/tools

•Perfect for set-based access + batch ETL work

Apache Hive : SQL Metadata + Engine over Hadoop

info@rittmanmead.com www.rittmanmead.com @rittmanmead

•Data integration tools could now load and process Hadoop data

•BI tools could treat Hadoop as just another data source

•Generally use MapReduce and Hive to access data

‣ODBC and JDBC access to Hive tabular data

‣Allows Hadoop unstructured/semi-structured 
data on HDFS to be accessed like RDBMS

Hive Provides a SQL Interface for BI + ETL Tools

Access direct Hive or extract using ODI12c
for structured OBIEE dashboard analysis

What pages are people visiting?
Who is referring to us on Twitter?
What content has the most reach?

Hive is slow

MapReduce is for losers

But the future is fast

info@rittmanmead.com www.rittmanmead.com @rittmanmead 16

Hadoop 2.0 Processing Frameworks + Tools

info@rittmanmead.com www.rittmanmead.com @rittmanmead 17

•MapReduce 2 (MR2) splits the functionality of the JobTracker 
by separating resource management and job scheduling/monitoring

• Introduces YARN (Yet Another Resource Manager)

•Permits other processing frameworks to MR

‣For example, Apache Spark

•Maintains backwards compatibility with MR1

• Introduced with CDH5+

MapReduce 2 and YARN

Node  
Manager

Node  
Manager

Node  
Manager

Resource  
Manager

Client

Client

info@rittmanmead.com www.rittmanmead.com @rittmanmead 18

•Runs on top of YARN, provides a faster execution engine than MapReduce for Hive, Pig etc

•Models processing as an entire data flow graph (DAG), rather than separate job steps

‣DAG (Directed Acyclic Graph) is a new programming style for distributed systems

‣Dataflow steps pass data between them as streams, rather than writing/reading from disk

•Supports in-memory computation, enables Hive on Tez (Stinger) and Pig on Tez

•Favoured In-memory / Hive v2  
route by Hortonworks

Apache Tez

In
pu

t D
at

a

TEZ DAG
Map()

Map()

Map()

Reduce()

O
ut

pu
t D

at
a

Reduce()

Reduce()

Reduce()

In
pu

t D
at

a Map()

Map()

Reduce()

Reduce()

info@rittmanmead.com www.rittmanmead.com @rittmanmead 19

Tez Advantage - Drop-In Replacement for MR with Hive, Pig

set hive.execution.engine=mr

set hive.execution.engine=tez

4m 17s

2m 25s

info@rittmanmead.com www.rittmanmead.com @rittmanmead 20

•Cloudera’s answer to Hive query response time issues

•MPP SQL query engine running on Hadoop, bypasses MapReduce for
direct data access

•Mostly in-memory, but spills to disk if required

•Uses Hive metastore to access Hive table metadata

•Similar SQL dialect to Hive - not as rich though and no support for Hive
SerDes, storage handlers etc

Cloudera Impala - Fast, MPP-style Access to Hadoop Data

info@rittmanmead.com www.rittmanmead.com @rittmanmead 21

•Log into Impala Shell, run INVALIDATE METADATA command to refresh Impala table list

•Run SHOW TABLES Impala SQL command to view tables available

•Run COUNT(*) on main ACCESS_PER_POST table to see typical response time

Enabling Hive Tables for Impala

[oracle@bigdatalite ~]$ impala-shell
Starting Impala Shell without Kerberos authentication

[bigdatalite.localdomain:21000] > invalidate metadata;
Query: invalidate metadata

Fetched 0 row(s) in 2.18s
[bigdatalite.localdomain:21000] > show tables;
Query: show tables
+-----------------------------------+
| name |
+-----------------------------------+
| access_per_post |
| access_per_post_cat_author |
| … |
| posts |
|——————————————————————————————————-+
Fetched 45 row(s) in 0.15s

[bigdatalite.localdomain:21000] > select count(*)  
 from access_per_post;
Query: select count(*) from access_per_post
+----------+
| count(*) |
+----------+
| 343 |
+----------+
Fetched 1 row(s) in 2.76s

info@rittmanmead.com www.rittmanmead.com @rittmanmead 22

•Beginners usually store data in HDFS using text file formats (CSV) but these have limitations

•Apache AVRO often used for general-purpose processing

‣Splitability, schema evolution, in-built metadata, support for block compression

•Parquet now commonly used with Impala due to column-orientated storage

‣Mirrors work in RDBMS world around column-store

‣Only return (project) the columns you require across a wide table

Apache Parquet - Column-Orientated Storage for Analytics

info@rittmanmead.com www.rittmanmead.com @rittmanmead 23

•But Parquet (and HDFS) have significant limitation for real-time analytics applications

‣Append-only orientation, focus on column-store  
makes streaming ingestion harder

•Kudu aims to combine best of HDFS + HBase

‣Real-time analytics-optimised

‣Supports updates to data

‣Fast ingestion of data

‣Accessed using SQL-style tables 
and get/put/update/delete API

Cloudera Kudu - Combining Best of HBase and Column-Store

info@rittmanmead.com www.rittmanmead.com @rittmanmead 24

•Many Hadoop tools now use in-memory
processing (R, Python, Spark etc)

•But they all work to their own standards

•Considerable overhead in serialising /
deserialising data between tools

•Apache Arrow standardised how in-memory
data is held

•Considerably reduced overhead and latency
between tools

Apache Arrow - Standardising In-Memory Structures

info@rittmanmead.com www.rittmanmead.com @rittmanmead 25

Apache Arrow : Common In-Memory Layer for Hadoop

info@rittmanmead.com www.rittmanmead.com @rittmanmead 26

•Similar concept to Oracle BI Server

‣Logical star scheme for business model

‣Maps to federated data sources

‣Integrates and models data for query

‣Can run alongside Kylin MOLAP server

•Part of wider next-gen Hadoop BI stack

‣Apache Zepplin web-based notebook

‣Spark/MR/Tez execution engines

‣Hive and Drill for ETL/ad-hoc SQL

•Slowly the BI stack gets built out...

Apache Lens : Logical Dimensional Model for Hadoop

In Oracle we have PL/SQL

In SQL Server we have TSQL

In Hadoop we have ... Spark

info@rittmanmead.com www.rittmanmead.com @rittmanmead 31

•Another DAG execution engine running on YARN

•More mature than TEZ, with richer API and more vendor support

•Uses concept of an RDD (Resilient Distributed Dataset)

‣RDDs like tables or Pig relations, but can be cached in-memory

‣Great for in-memory transformations, or iterative/cyclic processes

•Spark jobs comprise of a DAG of tasks operating on RDDs

•Access through Scala, Python or Java APIs

•Related projects include

‣Spark SQL

‣Spark Streaming

Apache Spark

info@rittmanmead.com www.rittmanmead.com @rittmanmead 32

•Native support for multiple languages  
with identical APIs

‣Python - prototyping, data wrangling

‣Scala - functional programming features

‣Java - lower-level, application integration

•Use of closures, iterations, and other  
common language constructs to minimize code

• Integrated support for distributed + 
functional programming

•Unified API for batch and streaming

Rich Developer Support + Wide Developer Ecosystem

scala> val logfile = sc.textFile("logs/access_log")
14/05/12 21:18:59 INFO MemoryStore: ensureFreeSpace(77353)  
called with curMem=234759, maxMem=309225062
14/05/12 21:18:59 INFO MemoryStore: Block broadcast_2  
stored as values to memory (estimated size 75.5 KB, free 294.6 MB)
logfile: org.apache.spark.rdd.RDD[String] =  
MappedRDD[31] at textFile at <console>:15

scala> logfile.count()
14/05/12 21:19:06 INFO FileInputFormat: Total input paths to process : 1
14/05/12 21:19:06 INFO SparkContext: Starting job: count at <console>:1
...
14/05/12 21:19:06 INFO SparkContext: Job finished:  
count at <console>:18, took 0.192536694 s
res7: Long = 154563

scala> val logfile = sc.textFile("logs/access_log").cache
scala> val biapps11g = logfile.filter(line => line.contains("/biapps11g/"))
biapps11g: org.apache.spark.rdd.RDD[String] = FilteredRDD[34] at filter at <console>:17
scala> biapps11g.count()
...
14/05/12 21:28:28 INFO SparkContext: Job finished: count at <console>:20, took 0.387960876 s
res9: Long = 403

info@rittmanmead.com www.rittmanmead.com @rittmanmead 33

•Spark SQL, and Data Frames, allow RDDs in Spark to be processed using SQL queries

•Bring in and federate additional data from JDBC sources

•Load, read and save data in Hive, Parquet and other structured tabular formats

Spark SQL - SQL within Apache Spark

val accessLogsFilteredDF = accessLogs
 .filter(r => ! r.agent.matches(".*(spider|robot|bot|slurp).*"))
 .filter(r => ! r.endpoint.matches(".*(wp-content|wp-admin).*")).toDF()
 .registerTempTable("accessLogsFiltered")

 val topTenPostsLast24Hour = sqlContext.sql("SELECT p.POST_TITLE, p.POST_AUTHOR, COUNT(*)  
 as total  
 FROM accessLogsFiltered a  
 JOIN posts p ON a.endpoint = p.POST_SLUG  
 GROUP BY p.POST_TITLE, p.POST_AUTHOR  
 ORDER BY total DESC LIMIT 10 ")

 // Persist top ten table for this window to HDFS as parquet file

 topTenPostsLast24Hour.save("/user/oracle/rm_logs_batch_output/topTenPostsLast24Hour.parquet" 
 , "parquet", SaveMode.Overwrite)

info@rittmanmead.com www.rittmanmead.com @rittmanmead

•Apache Drill is another SQL-on-Hadoop project that focus on schema-free data discovery

• Inspired by Google Dremel, innovation is querying raw data with schema optional

•Automatically infers and detects schema from semi-structured datasets and NoSQL DBs

•Join across different silos of data e.g. JSON records, Hive tables and HBase database

•Aimed at different use-cases than Hive -  
low-latency queries, discovery  
(think Endeca vs OBIEE)

Apache Drill - Leverage Embedded Metadata in Files

info@rittmanmead.com www.rittmanmead.com @rittmanmead

•Most modern datasource formats embed their schema in the data (“schema-on-read”)

•Apache Drill makes these as easy to join to traditional datasets as “point me at the data”

•Cuts out unnecessary work in defining Hive schemas for data that’s self-describing

•Supports joining across files, 
databases, NoSQL etc

Self-Describing Data - Parquet, AVRO, JSON etc

info@rittmanmead.com www.rittmanmead.com @rittmanmead

•Files can exist either on the local filesystem, or on HDFS

•Connection to directory or file defined in storage configuration

•Can work with CSV, TXT, TSV etc

•First row of file can provide schema (column names)

Apache Drill and Text Files

SELECT * FROM dfs.`/tmp/csv_with_header.csv2`;
+-------+------+------+------+
| name | num1 | num2 | num3 |
+-------+------+------+------+
hello	1	2	3
hello	1	2	3
hello	1	2	3
hello	1	2	3
hello	1	2	3
hello	1	2	3
hello	1	2	3
+-------+------+------+------+
7 rows selected (0.12 seconds)

SELECT * FROM dfs.`/tmp/csv_no_header.csv`;
+------------------------+
| columns |
+------------------------+
| ["hello","1","2","3"] |
| ["hello","1","2","3"] |
| ["hello","1","2","3"] |
| ["hello","1","2","3"] |
| ["hello","1","2","3"] |
| ["hello","1","2","3"] |
| ["hello","1","2","3"] |
+------------------------+
7 rows selected (0.112 seconds)

info@rittmanmead.com www.rittmanmead.com @rittmanmead

•JSON (Javascript Object Notation) documents are often
used for data interchange

•Exports from Twitter and other consumer services

•Web service responses and other B2B interfaces

•A more lightweight form of XML that is “self-describing”

•Handles evolving schemas, and optional attributes

•Drill treats each document as a row, and has features to

•Flatten nested data (extract elements from arrays)

•Generate key/value pairs for loosely structured data

Apache Drill and JSON Documents

use dfs.iot;
show files;
select in_reply_to_user_id, text from `all_tweets.json`
limit 5;
+---------------------+------+
| in_reply_to_user_id | text |
+---------------------+------+
null	BI Forum 2013 in Brighton has now sold-out
null	"Football has become a numbers game
null	Just bought Lyndsay Wise’s Book
null	An Oracle BI "Blast from the Past"
14716125	Dilbert on Agile Programming
+---------------------+------+
5 rows selected (0.229 seconds)

select name, flatten(fillings) as f  
from dfs.users.`/donuts.json`  
where f.cal < 300;

info@rittmanmead.com www.rittmanmead.com @rittmanmead

•Drill can connect to Hive to make use of metastore (incl. multiple Hive metastores)

•NoSQL databases (HBase etc)

•Parquet files (native storage format - columnar + self describing)

Apache Drill and Hive, HBase, Parquet Sources etc

USE hbase;
SELECT * FROM students;

+-------------+-----------------------+---+
| row_key | account | address |
+-------------+-----------------------+--+
[B@e6d9eb7	{"name":"QWxpY2U="}	{"state":"Q0E=","street":"MTIzIEJhbGxtZXIgQXY="}
[B@2823a2b4	{"name":"Qm9i"}	{"state":"Q0E=","street":"MSBJbmZpbml0ZSBMb29w"}
[B@3b8eec02	{"name":"RnJhbms="}	{"state":"Q0E=","street":"NDM1IFdhbGtlciBDdA=="}
[B@242895da	{"name":"TWFyeQ=="}	{"state":"Q0E=","street":"NTYgU291dGhlcm4gUGt3eQ=="}
+-------------+-----------------------+--+

SELECT firstname,lastname FROM  
hiveremote.`customers` limit 10;`  

+------------+------------+
| firstname | lastname |
+------------+------------+
Essie	Vaill
Cruz	Roudabush
Billie	Tinnes
Zackary	Mockus
Rosemarie	Fifield
Bernard	Laboy
Marianne	Earman
+------------+------------+

SELECT * FROM dfs.`iot_demo/geodata/region.parquet`;

+--------------+--------------+-----------------------+
| R_REGIONKEY | R_NAME | R_COMMENT |
+--------------+--------------+-----------------------+
0	AFRICA	lar deposits. blithe
1	AMERICA	hs use ironic, even
2	ASIA	ges. thinly even pin
3	EUROPE	ly final courts cajo
4	MIDDLE EAST	uickly special accou
+--------------+--------------+-----------------------+

info@rittmanmead.com www.rittmanmead.com @rittmanmead

•Drill developed for real-time, ad-hoc data exploration with schema discovery on-the-fly
• Individual analysts exploring new datasets, leveraging corporate metadata/data to help

•Hive is more about large-scale, centrally curated set-based big data access

•Drill models conceptually as JSON, vs. Hive’s tabular approach

•Drill introspects schema from whatever it connects to, vs. formal modeling in Hive

Apache Drill vs. Apache Hive

Interactive Queries  
(Data Discovery, Tableau/VA)

Reporting Queries 
(Canned Reports, OBIEE)

ETL  
(ODI, Scripting, Informatica)

Apache Drill Apache Hive

Interactive Queries
100ms - 3mins

Reporting Queries
3mins - 20mins

ETL & Batch Queries
20mins - hours

www.rittmanmead.com

http://www.rittmanmead.com

MARK RITTMAN, COO, RITTMAN MEAD BUDAPEST DATA FORUM, JUNE 2016

SQL-ON-HADOOP FOR ANALYTICS + BI:  
WHAT ARE MY OPTIONS, WHAT’S THE FUTURE?

