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• Working with global weather data

• Historical / forecast weather data

• Needs a scalable platform for geo spatial queries

ABOUT CLIENT
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Goal: interpolated spot weather service 

Return interpolated weather of N closest locations 

for a location for an altitude for a given time.

• Store 500GB daily input weather data

• Interpolate temperature

• Multiple calculations to combine input sources 

in next version

Time series, region based and other use cases in 

future.

USE CASE: INTERPOLATED SPOT WEATHER
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INPUTS AND OUTPUTS
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Expandable & fast storage for micro-services, strategical platform for several future projects

• Geo spatial search

• Elastic/linear-scalability (scale out/down)

• (Arbitrary) large data sets.

Current need:

– ~500 GB daily

– 3.3 million locations

– 100 time forecast steps

– 10 altitudes

– Number of documents: 

• Primary goal: 1.5billion

• Secondary goal: 10 billion

GOALS I.
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GOALS II.

• Fast

– Ingestion

– Queries: high throughput, low latency

• ingestion time:

– Primary goal: 30 minutes (for 1.5 billion documents)

– Secondary goal: 75 minutes (for 10 billion documents)

• Query speed:

– Response time < 200 milliSec

– Throughput 2000 req/sec

• Parallel ingestion & queries

• Amazon AWS

• Cost efficiency
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Expectations:

• Expandable

• Low-latency random access

• Highly concurrent access

• Spherical geo spatial search

ALTERNATIVES

Alternatives

Customer insisted on Elasticsearch
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• Search engine based on Lucene

• Distributed, scalable, highly available

• Near real-time indexing and search

• Nice REST API

ABOUT ELASTICSEARCH
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INTEGRATION

• Hadoop
• Spark / Spark SQL
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• Biggest cloud provider

• easy to scale on AWS

AWS: AMAZON WEB SERVICES
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TRADE-OFFs

Elasticsearch service of AWS Elastic Cloud Custom Elasticsearch on EC2

• Number of nodes < 10
• Less customizable
• Easy to operate
• Limited instance types
• Slow
• Older version

• Elasticsearch on AWS by 
elastic.co

• Easy to scale and upgrade
• Latest version

• Any number of nodes
• Fully configurable
• Requires (some) ES knowledge
• Any instance type
• For faster cases

Shard by location Shard by time

Hybrid sharding?

How to organize documents: many small docs or few bigger ones?

Pre-calculate, cache or distribute storage and calculation?
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ACHIEVEMENTS
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ARCHITECTURE
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• “Full” control over performance

• Linear scalability

• Store as many documents as we like

• Ingest documents as fast as we like

• Response time: as fast as we like

• Just add more nodes & shards

• Balanced parallel queries & ingestion

• Created a scalable/flexible/general distributed 

storage architecture that can be a strategic 

component for many current and future projects

• C3.4xlarge & locally-attached SSD

• ES with/without Docker

SCALABLE INGESTION AND QUERIES
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NEAR-LINEARLY SCALABLE INGESTION
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10 nodes
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speed: 185,823 docs/sec
Local SSD

30 nodes
1billion docs
32minutes

speed: 527,643 docs/sec
Local SSD

30 nodes
0.5 billion docs

10minutes
speed: 797,576 docs/sec
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LINEARLY SCALABLE QUERIES
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Throughput: 1132 req/sec
Latency: 86ms

Local SSD

30 nodes
1billion docs
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Latency: 94ms

Local SSD
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PARALLEL INGESTION & QUERIES

Ingestion Query Load

Elapsed time speed 
[docs/sec]

Load Avg query latency
[milliSec]

ES data node
CPU[%]

Disk IO
read/write
[MB/sec]

NET
IN/OUT

[Mbit/sec]

10 minutes 35 sec 797,576 0 req/sec N/A

12 minutes 8 sec 695,687 500 req/sec 76

12 minutes 53 sec 655,188 2000 req/sec 96 1165 15/65 49/44

Ingest 500 million docs into the ES cluster with 30 (c3.4xlarge) data nodes, 
while querying from 1 billion docs with 1 replica shard from another index.

• Extra free capacity in 30-node ES cluster to server even higher query load
or use a smaller cluster

• Tune free parameters to get optimal price/performance ratio (even dynamically for ingestion periods):
• Node count
• AWS VM instance type (CPU, memory, DISK size, EBS/SSD, throughput, latency)
• Primary shard count, sharding type
• Replica shard count
• AWS instances on demand or reserved
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OBSTACLES SOLVED
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PERFORMANCE OPTIMIZATION PROCESS 1.

Based on measurements

Architecture

StatisticsBottlenecks

Fine-tuning Innovate, 
Forrest, 
Innovate!
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PERFORMANCE OPTIMIZATION PROCESS 2.

Optimize
1-node 
ES cluster

•Document struct.

•Shard size

•Fine-tune query

Scale-up 
1-node ES 
cluster

•# of CPUs

•Disk space

•Disk IO speed

•Disk latency

•Network speed

•AWS instance type

Scale-out ES 
cluster

•# of nodes

•# of shards

Scale-out 
ingestion 

& 
calculation 

service nodes

Optimize ES 
schema, 

sharding & 
replication
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MEASUREMENTS

• Raw system performance (in Docker container and in VM):

• Disk IO throughput & latency (iostat, dd)

• Network (nload)

• CPU utilization (top)

• memory

• ES performance:

• Ingestion speed & time (ingestor app, time)

• Query throughput & latency (JMeter)

• Replica creation time (manually)

• Cluster utilization (plugins: Marvel, HQ)

• Scenarios:

• Ingestion only

• Query only

• Parallel ingestion and query of different indexes within the same cluster
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INFRASTRUCTURE

• Distributed data ingestion on multiple machines & multiple threads

• Docker based virtualization

• Automated application deployment:

• Automated provisioning:

• Dynamic & parallel infrastructure provisioning (AWS CloudFormation, Bash scripts)

• Easy to scale Cluster configuration in CSV and some auxiliary files (all in a common directory)

• Parallel application deployment (Bash scripts) using a deployment server in AWS
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• AWS instance type scale-up: m4.xlarge →

c4.4xlarge → c3.4xlarge → i2.2xlarge

• Cluster size scale-out: 1 node → 7+3 → 10+3 

nodes → 30+3 nodes

• (Remote) EBS vs instance-store SSD

• Disk vs memory storage

ES CLUSTER CONFIGURATIONS

• Document count: 1M → 10M → 100M → 1B

• Document schema:

• Small vs large document size: 10 vs 50 
weather parameters

• Mapping settings: index: no, norms: 
disabled, dynamic: false

• No upper limit for indexing (throttle: none)

• # of ingestor instances: 1 → 2 → 3 → 6

• # of parallel threads: 1 → 10 → 16 → 32

• Ingestor profiling with JVisualVM and AWS 

CloudWatch
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Technology stack

•Amazon EC2, EBS, ELB

•ElasticSearch

•Spring Boot

•JMeter

•Docker

•CentOS Linux

•TestNG, AssertJ, Mockito

•Hystrix

•Graphite/Graphana

•ELK

Tools

•AWS CLI

•Eclipse, IntelliJ

•Maven

•Git

•Concourse CI, GoCD, Bamboo

•Quay.io

•Trello, Jira

•Confluence

•Zoom, Skype, HipChat, Slack

•GIS tools (Google Earth)

•sketchboard.me

Methods, Principles

•Agile, Kanban

•Pair programming

•Distributed teams

•Test driven development

•Infrastructure as code

•Immutable infrastructure

•Monitor, measure, improve, 
iterate

TECHNOLOGY STACK, TOOLS, PRINCIPLES
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LESSONS LEARNED
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OBSTACLES SOLVED & TECHNOLOGY DETAILS

• Balance cluster

• Evenly distribute: locations, queries, shards, custom hash function

• Remove hot shards, nodes, overloaded masters

• Generated sample dataset

• Ingestion: 

• Multiple threads

• Bulk ingestion API

• Dedicated bulk for shards

• Find best sharding:

• Geo-location-based

• Time-based

• Hybrid (model & time & altitude)

• Geo-spatial query speed up: geo-distance-sort, 

geo-distance, geo-bounding-box, geo-hash, 

bool-filters

• NodeClient vs TransportClient vs REST API
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GENERAL

• Exact measurements driven development

• Extrapolate carefully!

• Ingestion should be optimized separately from query tuning

• Measure speed after each and every modification

• Hard to realize in practice due to time pressure

• Measure the cumulative effect of multiple changes

• Problematic when the number of options / combinations to try is large

• Long enough ingestion test with large enough data sets (but not too large) on a big enough cluster, but it 

should run fast enough 

AWS

• EBS warmup

• High EBS latency → Significant performance impact on ES

• Ephemeral (local SSD) storage is much faster for random access

• Fluctuation instance-store SSD write latency with small files < 4096bytes
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ELASTICSEARCH

• More shards → Better ES cluster utilization → Better scalability

• Replica shards (even with a single instance) → Higher query throughput during a parallel ingestion

• Overloaded ES becomes unreliable (due to internal timeouts and high disk latency)

• Workaround: Catch exception, sleep, retry operation, abort after X attempts

• Limit traffic to ES cluster in REST layer

• Be cautious with configuration tweaks; some may reduce performance!

• Carefully with plugins: Marvel monitoring plugin slows down the ingestion

• Java client:

• 1-node cluster → Use TransportClient

• Multi-node cluster → Use NodeClient
(May not work for external clients connecting to an ES cluster behind a firewall!)

• Docker overhead: less than 5%

• Bottleneck:

• Uneven ingestion speed (some threads finishing much earlier than the rest) → Lower throughput

• Not enough time-based shards → Weaker scalability

• Too large shards → High latency
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• Good documentation

• Excellent examples

• Frequent releases

• Large community / forum

• Easy to scale in cloud

WHAT WE LIKED
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THE END

THANK YOU!


