
1CONFIDENTIAL

Experience with

Elasticsearch scalability

in AWS

BÉLA BOROS, EPAM SYSTEMS, SZEGED

15-JUNE-2016



2CONFIDENTIAL

AGENDA

About1

Goals2

Achievements3

Obstacles solved4

Lessons learned5

What we liked6



3CONFIDENTIAL

• Working with global weather data

• Historical / forecast weather data

• Needs a scalable platform for geo spatial queries

ABOUT CLIENT



4CONFIDENTIAL

Goal: interpolated spot weather service 

Return interpolated weather of N closest locations 

for a location for an altitude for a given time.

• Store 500GB daily input weather data

• Interpolate temperature

• Multiple calculations to combine input sources 

in next version

Time series, region based and other use cases in 

future.

USE CASE: INTERPOLATED SPOT WEATHER



5CONFIDENTIAL

INPUTS AND OUTPUTS

Weather
Service

customers

Other services

European
weather
providers

Other 
weather
providers

Weather 
stations

W
ea

th
er

 d
at

a

W
ea

th
er

 q
u

er
y 

fo
r 

P
O

I
A

cc
u

ra
te

 R
es

p
o

n
se

AWS



6CONFIDENTIAL

Expandable & fast storage for micro-services, strategical platform for several future projects

• Geo spatial search

• Elastic/linear-scalability (scale out/down)

• (Arbitrary) large data sets.

Current need:

– ~500 GB daily

– 3.3 million locations

– 100 time forecast steps

– 10 altitudes

– Number of documents: 

• Primary goal: 1.5billion

• Secondary goal: 10 billion

GOALS I.



7CONFIDENTIAL

GOALS II.

• Fast

– Ingestion

– Queries: high throughput, low latency

• ingestion time:

– Primary goal: 30 minutes (for 1.5 billion documents)

– Secondary goal: 75 minutes (for 10 billion documents)

• Query speed:

– Response time < 200 milliSec

– Throughput 2000 req/sec

• Parallel ingestion & queries

• Amazon AWS

• Cost efficiency



8CONFIDENTIAL

Expectations:

• Expandable

• Low-latency random access

• Highly concurrent access

• Spherical geo spatial search

ALTERNATIVES

Alternatives

Customer insisted on Elasticsearch



9CONFIDENTIAL

• Search engine based on Lucene

• Distributed, scalable, highly available

• Near real-time indexing and search

• Nice REST API

ABOUT ELASTICSEARCH



10CONFIDENTIAL

INTEGRATION

• Hadoop
• Spark / Spark SQL



13CONFIDENTIAL

• Biggest cloud provider

• easy to scale on AWS

AWS: AMAZON WEB SERVICES



14CONFIDENTIAL

TRADE-OFFs

Elasticsearch service of AWS Elastic Cloud Custom Elasticsearch on EC2

• Number of nodes < 10
• Less customizable
• Easy to operate
• Limited instance types
• Slow
• Older version

• Elasticsearch on AWS by 
elastic.co

• Easy to scale and upgrade
• Latest version

• Any number of nodes
• Fully configurable
• Requires (some) ES knowledge
• Any instance type
• For faster cases

Shard by location Shard by time

Hybrid sharding?

How to organize documents: many small docs or few bigger ones?

Pre-calculate, cache or distribute storage and calculation?



15CONFIDENTIAL

ACHIEVEMENTS



16CONFIDENTIAL

ARCHITECTURE

ES
data nodes

ES
data nodes

ES
data nodes

ES
master nodes

ES
master nodes

ES
master nodes

Spring 
boot

Spring 
boot

ELB
JMeter
master

JMeter
worker

JMeter
worker

Ingestor

Ingestor

AWS
Elsticsearch cluster

Ingestors

JMeter for load test
Calc.

Microserv.

. . .

. . .
. . .

. . .



17CONFIDENTIAL

• “Full” control over performance

• Linear scalability

• Store as many documents as we like

• Ingest documents as fast as we like

• Response time: as fast as we like

• Just add more nodes & shards

• Balanced parallel queries & ingestion

• Created a scalable/flexible/general distributed 

storage architecture that can be a strategic 

component for many current and future projects

• C3.4xlarge & locally-attached SSD

• ES with/without Docker

SCALABLE INGESTION AND QUERIES

10 nodes 30 nodes

In
ge

st
io

n
in

to
 S

SD

• 185,823 docs/sec
• 1 billion docs
• 90 minutes

• 527,014 docs/sec
• 1 billion docs, 
• 32 minutes

In
ge

st
io

n
 

in
to

 
m

e
m

o
ry

• 797,576 docs/sec
• 0.5 billion docs

Q
u

e
ry

• 1,132 req/sec • 3,239 req/sec



18CONFIDENTIAL

NEAR-LINEARLY SCALABLE INGESTION

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35

Ingestion time decreases linearly with cluster size
(1 billion documents ingested)

Data node count in Elasticsearch cluster

In
ge

st
io

n
 t

im
e 

[s
ec

o
n

d
s]

10 nodes
1billion docs
90minutes

speed: 185,823 docs/sec
Local SSD

30 nodes
1billion docs
32minutes

speed: 527,643 docs/sec
Local SSD

30 nodes
0.5 billion docs

10minutes
speed: 797,576 docs/sec

memory

𝐶 ≈
𝑆𝑝𝑒𝑒𝑑

𝑛𝑜𝑑𝑒 | 𝑠ℎ𝑎𝑟𝑑 𝑐𝑜𝑢𝑛𝑡

3 X bigger
3 X faster



19CONFIDENTIAL

LINEARLY SCALABLE QUERIES

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35

Query throughput increases linearly with cluster size
(1 billion documents ingested)

Data node count in Elasticsearch cluster

Th
ro

u
gh

p
u

t 
[r

eq
/s

ec
]

10 nodes
1billion docs

Throughput: 1132 req/sec
Latency: 86ms

Local SSD

30 nodes
1billion docs

Throughput: 3239 req/ses
Latency: 94ms

Local SSD

𝐶 ≈
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑛𝑜𝑑𝑒 | 𝑠ℎ𝑎𝑟𝑑 𝑐𝑜𝑢𝑛𝑡

3 X bigger
3 X faster



20CONFIDENTIAL

PARALLEL INGESTION & QUERIES

Ingestion Query Load

Elapsed time speed 
[docs/sec]

Load Avg query latency
[milliSec]

ES data node
CPU[%]

Disk IO
read/write
[MB/sec]

NET
IN/OUT

[Mbit/sec]

10 minutes 35 sec 797,576 0 req/sec N/A

12 minutes 8 sec 695,687 500 req/sec 76

12 minutes 53 sec 655,188 2000 req/sec 96 1165 15/65 49/44

Ingest 500 million docs into the ES cluster with 30 (c3.4xlarge) data nodes, 
while querying from 1 billion docs with 1 replica shard from another index.

• Extra free capacity in 30-node ES cluster to server even higher query load
or use a smaller cluster

• Tune free parameters to get optimal price/performance ratio (even dynamically for ingestion periods):
• Node count
• AWS VM instance type (CPU, memory, DISK size, EBS/SSD, throughput, latency)
• Primary shard count, sharding type
• Replica shard count
• AWS instances on demand or reserved



21CONFIDENTIAL

OBSTACLES SOLVED



22CONFIDENTIAL

PERFORMANCE OPTIMIZATION PROCESS 1.

Based on measurements

Architecture

StatisticsBottlenecks

Fine-tuning Innovate, 
Forrest, 
Innovate!



23CONFIDENTIAL

PERFORMANCE OPTIMIZATION PROCESS 2.

Optimize
1-node 
ES cluster

•Document struct.

•Shard size

•Fine-tune query

Scale-up 
1-node ES 
cluster

•# of CPUs

•Disk space

•Disk IO speed

•Disk latency

•Network speed

•AWS instance type

Scale-out ES 
cluster

•# of nodes

•# of shards

Scale-out 
ingestion 

& 
calculation 

service nodes

Optimize ES 
schema, 

sharding & 
replication



24CONFIDENTIAL

MEASUREMENTS

• Raw system performance (in Docker container and in VM):

• Disk IO throughput & latency (iostat, dd)

• Network (nload)

• CPU utilization (top)

• memory

• ES performance:

• Ingestion speed & time (ingestor app, time)

• Query throughput & latency (JMeter)

• Replica creation time (manually)

• Cluster utilization (plugins: Marvel, HQ)

• Scenarios:

• Ingestion only

• Query only

• Parallel ingestion and query of different indexes within the same cluster



25CONFIDENTIAL

INFRASTRUCTURE

• Distributed data ingestion on multiple machines & multiple threads

• Docker based virtualization

• Automated application deployment:

• Automated provisioning:

• Dynamic & parallel infrastructure provisioning (AWS CloudFormation, Bash scripts)

• Easy to scale Cluster configuration in CSV and some auxiliary files (all in a common directory)

• Parallel application deployment (Bash scripts) using a deployment server in AWS



26CONFIDENTIAL

• AWS instance type scale-up: m4.xlarge →

c4.4xlarge → c3.4xlarge → i2.2xlarge

• Cluster size scale-out: 1 node → 7+3 → 10+3 

nodes → 30+3 nodes

• (Remote) EBS vs instance-store SSD

• Disk vs memory storage

ES CLUSTER CONFIGURATIONS

• Document count: 1M → 10M → 100M → 1B

• Document schema:

• Small vs large document size: 10 vs 50 
weather parameters

• Mapping settings: index: no, norms: 
disabled, dynamic: false

• No upper limit for indexing (throttle: none)

• # of ingestor instances: 1 → 2 → 3 → 6

• # of parallel threads: 1 → 10 → 16 → 32

• Ingestor profiling with JVisualVM and AWS 

CloudWatch



27CONFIDENTIAL

Technology stack

•Amazon EC2, EBS, ELB

•ElasticSearch

•Spring Boot

•JMeter

•Docker

•CentOS Linux

•TestNG, AssertJ, Mockito

•Hystrix

•Graphite/Graphana

•ELK

Tools

•AWS CLI

•Eclipse, IntelliJ

•Maven

•Git

•Concourse CI, GoCD, Bamboo

•Quay.io

•Trello, Jira

•Confluence

•Zoom, Skype, HipChat, Slack

•GIS tools (Google Earth)

•sketchboard.me

Methods, Principles

•Agile, Kanban

•Pair programming

•Distributed teams

•Test driven development

•Infrastructure as code

•Immutable infrastructure

•Monitor, measure, improve, 
iterate

TECHNOLOGY STACK, TOOLS, PRINCIPLES



28CONFIDENTIAL

LESSONS LEARNED



29CONFIDENTIAL

OBSTACLES SOLVED & TECHNOLOGY DETAILS

• Balance cluster

• Evenly distribute: locations, queries, shards, custom hash function

• Remove hot shards, nodes, overloaded masters

• Generated sample dataset

• Ingestion: 

• Multiple threads

• Bulk ingestion API

• Dedicated bulk for shards

• Find best sharding:

• Geo-location-based

• Time-based

• Hybrid (model & time & altitude)

• Geo-spatial query speed up: geo-distance-sort, 

geo-distance, geo-bounding-box, geo-hash, 

bool-filters

• NodeClient vs TransportClient vs REST API



30CONFIDENTIAL

GENERAL

• Exact measurements driven development

• Extrapolate carefully!

• Ingestion should be optimized separately from query tuning

• Measure speed after each and every modification

• Hard to realize in practice due to time pressure

• Measure the cumulative effect of multiple changes

• Problematic when the number of options / combinations to try is large

• Long enough ingestion test with large enough data sets (but not too large) on a big enough cluster, but it 

should run fast enough 

AWS

• EBS warmup

• High EBS latency → Significant performance impact on ES

• Ephemeral (local SSD) storage is much faster for random access

• Fluctuation instance-store SSD write latency with small files < 4096bytes



31CONFIDENTIAL

ELASTICSEARCH

• More shards → Better ES cluster utilization → Better scalability

• Replica shards (even with a single instance) → Higher query throughput during a parallel ingestion

• Overloaded ES becomes unreliable (due to internal timeouts and high disk latency)

• Workaround: Catch exception, sleep, retry operation, abort after X attempts

• Limit traffic to ES cluster in REST layer

• Be cautious with configuration tweaks; some may reduce performance!

• Carefully with plugins: Marvel monitoring plugin slows down the ingestion

• Java client:

• 1-node cluster → Use TransportClient

• Multi-node cluster → Use NodeClient
(May not work for external clients connecting to an ES cluster behind a firewall!)

• Docker overhead: less than 5%

• Bottleneck:

• Uneven ingestion speed (some threads finishing much earlier than the rest) → Lower throughput

• Not enough time-based shards → Weaker scalability

• Too large shards → High latency



32CONFIDENTIAL

• Good documentation

• Excellent examples

• Frequent releases

• Large community / forum

• Easy to scale in cloud

WHAT WE LIKED



33CONFIDENTIAL

THE END

THANK YOU!


