, EPAM SYSTEJ?,, S

BELA BOROS

15-JUNE-2016

AGENDA

About

Goals
Achievements
Obstacles solved

Lessons learned

000000

What we liked

<BPaMm> | conroenmiaL 2

ABOUT CLIENT

Working with global weather data
Historical / forecast weather data

Needs a scalable platform for geo spatial queries

<BI]B|T| > | CONFIDENTIAL

USE CASE: INTERPOLATED SPOT WEATHER

Goal: interpolated spot weather service

Return interpolated weather of N closest locations
for a location for an altitude for a given time.

« Store 500GB daily input weather data
* Interpolate temperature

* Multiple calculations to combine input sources
in next version

Time series, region based and other use cases in
future.

P

10 INEHOPUES

DROZSMA

<Bpam > | CONFIDENTIAL

INPUTS AND OUTPUTS

customers European

) weather
j - / providers
1 \\

g 3 /

- C

o

2 § \ I

[M

S Weather 2 ° Weather

S 2 Service 2 stations

o O S

c > 8

= O

© O ;

V<

E \

Other services

Other
weather
providers

<Bpam> | CONFIDENTIAL ;

GOALS |I.

Expandable & fast storage for micro-services, strategical platform for several future projects
* Geo spatial search
+ Elastic/linear-scalability (scale out/down)

* (Arbitrary) large data sets.
Current need:

~500 GB daily
— 3.3 million locations

— 100 time forecast steps £ P~
L) X
— 10 altitudes ‘ \
— Number of documents: v\ _N
* Primary goal: 1.5billion

* Secondary goal: 10 billion

<Bpam> | CONFIDENTIAL 6

GOALS Il.

* Fast

— Ingestion
— Queries: high throughput, low latency
* ingestion time:

— Primary goal: 30 minutes (for 1.5 billion documents)
— Secondary goal: 75 minutes (for 10 billion documents)
* Query speed:

— Response time < 200 milliSec / ol
— Throughput 2000 req/sec / \ A

+ Parallel ingestion & queries C A
Q

* Amazon AWS

+ Cost efficiency

<Bpam> | CONFIDENTIAL 7

ALTERNATIVES

Expectations: Alternatives

- Expandable .
- Low-latency random access . mongo

Amazon DynamoDB

¢ Apache 1/
& redis sorr -

Customer insisted on Elasticsearch O Couch base I-": CgﬁhEhDB

'..9 eIaSTiC <EEROSPIKE—

<Bpam> | CONFIDENTIAL 8

« Highly concurrent access

Spherical geo spatial search

ABOUT ELASTICSEARCH "..o elastic

+ Search engine based on Lucene
- Distributed, scalable, highly available
* Near real-time indexing and search

* Nice REST API Plugins

User Interface

Store, Index,
i &Analyze

Cloud/Hosted Cloud: Hosted Elasticsearch

(E[]am> | CONFIDENTIAL 9

INTEGRATION

* Hadoop
* Spark /Spark SQL

Index directly

] - . | L
[:"]] dﬂtabmks e into Elasticsearch Visualize
E : from Hadoop your data
E III Y storm in. real
: |
E cascading

es-hadoop

HDFS

yoJeasonse|g

Query Elasticsearch
from Hadoop

et
Hortonworks el Backup Elasticsearch

to HDFS

<Bpam > | conFiENTIAL

AWS: AMAZON WEB SERVICES

Biggest cloud provider

* easy to scale on AWS

amazon

webservices™

CONFIDENTIAL

<epamp>

\
e & Microsoft ORACLE' d S A
i w camdd) @ C v |
AWS Service w Sl RS PO Pangres WORDPRESS Mobile Amazon Java Python
Marketplace Catalog ¢ pa L Services WorkSpaces $
& Applications o
—— , = f ~ [B Ruby Node.js
S % ¢ @" s @ € =
Elastic SNS SES Email Data Elasti RDS RedShift Dynamo Cloud
Transcoder Notification SMTP Queuemg Pipeline s Hadoop Cache VY, = m fri v
< Application Services Ana!ytlcs Database v, Templates @
e EC2 i X D I Code iOS Android
Elastic Deploy
b Compute EBS Block 53 Object Glacier Enc[ypt & \ Libraries / SDKs)
) m Storage Storage EIFais‘;vc Archival m Key Mgmt AWS /ﬁ
: Sunt - Console e
— 'Pg* LETJZ.‘:“ s e = Identity & 1l
Elastic IP Auto AMI Tekiner Storage = ? Access CloudWatch -
Scaling CloudFront Gateway Import/ Mamt Monitoring API Gateway
CDN Export b2
\ Compute Storage / .
Directory CodeCommit
[N\ | > Services £ Config Library
m W Mamt
i qa v $ g% CloudTrail e adie
-) L0g fudit OpsWorks || “& Workflow
Route 53 Internet Elastic LB Direct Virtual Customer
DNS Gateway Connect (;ar::::: Gateway € Trusted e
2 Networking Y) Advisor Elastic . Famm
p Beanstalk \Eaia
Region | —
................................ R See e . ecur Operations Devel t
L AWS Global Infrastructure Edge Locations R P B\ ot)
13

TRADE-OFFs

Elasticsearch service of AWS Elastic Cloud Custom Elasticsearch on EC2
* Number of nodes < 10 * Elasticsearch on AWS by * Any number of nodes
* Less customizable elastic.co * Fully configurable
* Easy to operate * Easy to scale and upgrade * Requires (some) ES knowledge
* Limited instance types * Latest version * Anyinstance type
* Slow * For faster cases
e Older version

Shard by location Shard by time

Hybrid sharding?

How to organize documents: many small docs or few bigger ones?

Pre-calculate, cache or distribute storage and calculation?

<Bpam> | CONFIDENTIAL »

ARCHITECTURE

AWS Ingestors)
Elsticsearch cluster
Ingestor ES
data nodes
| ES
ES

master nodes

Ingestor \ data nodes
Calc. \>< ES

master nodes

JMeter for load test Microserv.

worker
IMeter boot — master nodes
master ELB
ES
JMelter S data nodes
worker boot

<Bpam > | CONFIDENTIAL

SCALABLE INGESTION AND QUERIES

T

« “Full” control over performance

_ N e 185,823 docs/sec e 527,014 docs/sec
* Linear scalability 59 * 1 billion docs 1 billion docs,
=) . .
« Store as many documents as we like ?n 9 * 90 minutes * 32 minutes
e .E

* Ingest documents as fast as we like
* Response time: as fast as we like

* Just add more nodes & shards e 797,576 docs/sec

« Balanced parallel queries & ingestion * 0.5 billion docs

c
0
=]
(%)
()
(=T1)
=

memory

* Created a scalable/flexible/general distributed
storage architecture that can be a strategic

f f j
component for many current and future projects . 1132 reg/sec + 3,239 reg/sec

* (C3.4xlarge & locally-attached SSD

- ES with/without Docker

(E[]am > | CONFIDENTIAL

Speed

NEAR-LINEARLY SCALABLE INGESTION

node | shard count

10 nodes
1billion docs

90minutes
speed: 185,823 docs/sec Ingestion time decreases linearly with cluster size e

Local SSD - . .

(1 billion documents ingested) 1billion docs
32minutes
6000 " speed: 527,643 docs/sec

— ° Local SSD
- 5000
[
S
o 4000
M
w
£ 3000 30 nodes
s 0.5 billion docs
.8 2000 10minutes o
4 speed: 797,576 docs/sec
%0 1000 memory : : . Y

. .

0 5 10 15 20 25 30 35

Data node count in Elasticsearch cluster

<Bpam> | CONFIDENTIAL 18

LINEARLY SCALABLE QUERIES

3500

3000

2500

2000

1500

1000

500

Throughput [req/sec]

Throughput

node | shard count

Query throughput increases linearly with cluster size
(1 billion documents ingested)

10 nodes °
1billion docs
Throughput: 1132 req/sec
Latency: 86ms

Local SSD
30 nodes
- 1billion docs
® Throughput: 3239 req/ses
Latency: 94ms
Local SSD
5 10 15 20 25 30 35

Data node count in Elasticsearch cluster

<epam> | CONFIDENTIAL 19

PARALLEL INGESTION & QUERIES

Ingest 500 million docs into the ES cluster with 30 (c3.4xlarge) data nodes,
while querying from 1 billion docs with 1 replica shard from another index.

Ingestion Load
10 minutes 35 sec 797,576 0 req/sec N/A
12 minutes 8 sec 695,687 500 req/sec 76
12 minutes 53 sec 655,188 2000 req/sec 96 1165 15/65 49/44

* Extrafree capacity in 30-node ES cluster to server even higher query load
or use a smaller cluster
* Tune free parameters to get optimal price/performance ratio (even dynamically for ingestion periods):
* Node count
* AWS VM instance type (CPU, memory, DISK size, EBS/SSD, throughput, latency)
* Primary shard count, sharding type
* Replica shard count
* AWS instances on demand or reserved

<E[]am> | CONFIDENTIAL 20

PERFORMANCE OPTIMIZATION PROCESS 1.

Fine-tuning //"' m _\érchitecture I n no Va-'.e
’ ’
Forrest
/

Bottlenecks_ ;,_,/Statistics I n n o V GT e I
.

Based on measurements

<epam> |

PERFORMANCE OPTIMIZATION PROCESS 2.

Optimize Scale-up Scale-out ES
1-node 1-node ES cluster

ES cluster cluster o# of nodes Scale-out

noestion Optimize ES
eDocument struct. o# of CPUs o# of shards g

schema,

eShard size *Disk space & _
eFine-tune query *Disk 10 speed calculation
*Disk latency service nodes
eNetwork speed
¢AWS instance type

sharding &
replication

<E[]am> | CONFIDENTIAL .

MEASUREMENTS

* Raw system performance (in Docker container and in VM):
* Disk IO throughput & latency (iostat, dd)
* Network (nload)
e CPU utilization (top)
* memory
* ES performance:
* Ingestion speed & time (ingestor app, time)
* Query throughput & latency (JMeter)
* Replica creation time (manually)
e Cluster utilization (plugins: Marvel, HQ)
* Scenarios:
* Ingestion only
* Queryonly
* Parallel ingestion and query of different indexes within the same cluster

<Bpam> | CONFIDENTIAL 24

INFRASTRUCTURE

» Distributed data ingestion on multiple machines & multiple threads
* Docker based virtualization

» Automated application deployment:

* Automated provisioning:

* Dynamic & parallel infrastructure provisioning (AWS CloudFormation, Bash scripts)
* Easy to scale Cluster configuration in CSV and some auxiliary files (all in a common directory)
* Parallel application deployment (Bash scripts) using a deployment server in AWS

<Bpam> | CONFIDENTIAL 25

ES CLUSTER CONFIGURATIONS

+ AWS instance type scale-up: m4.xlarge —
c4.4xlarge — c3.4xlarge — i2.2xlarge

¢ Cluster size scale-out: 1 node — 7+3 — 10+3
nodes — 30+3 nodes

* (Remote) EBS vs instance-store SSD

« Disk vs memory storage

<Bpam > | CONFIDENTIAL

Document count: 1M —- 10M — 100M — 1B

Document schema:

* Small vs large document size: 10 vs 50
weather parameters
* Mapping settings: index: no, norms:
disabled, dynamic: false
No upper limit for indexing (throttle: none)

of ingestor instances: 1 -2 -3 — 6
of parallel threads: 1 — 10 —» 16 — 32

Ingestor profiling with JVisualVM and AWS
CloudWatch

26

TECHNOLOGY STACK, TOOLS, PRINCIPLES

e Amazon EC2, EBS, ELB e AWS CLI e Agile, Kanban

e ElasticSearch e Eclipse, IntelliJ ® Pair programming

e Spring Boot * Maven e Distributed teams

e]Meter * Git e Test driven development

e Docker e Concourse Cl, GoCD, Bamboo e Infrastructure as code

e CentOS Linux e Quay.io e Immutable infrastructure

e TestNG, Assert), Mockito e Trello, Jira * Monitor, measure, improve,
* Hystrix e Confluence iterate

e Graphite/Graphana e Zoom, Skype, HipChat, Slack

e ELK ¢ GIS tools (Google Earth)

e sketchboard.me

<Bpam> | CONFIDENTIAL .

OBSTACLES SOLVED & TECHNOLOGY DETAILS

+ Balance cluster
. Evenly distribute: locations, queries, shards, custom hash function
. Remove hot shards, nodes, overloaded masters
. Generated sample dataset
* Ingestion:
. Multiple threads
. Bulk ingestion API
. Dedicated bulk for shards
* Find best sharding:
. Geo-location-based
. Time-based
. Hybrid (model & time & altitude) |
* Geo-spatial query speed up: geo-distance-sort, b
geo-distance, geo-bounding-box, geo-hash,
bool-filters
* NodeClient vs TransportClient vs REST API

Image/|BEAG N e
¥ Image US! Geological Survey;
Imageillandsat
Data SIO, NOAA, U'S Navy, NGA, GEBCO

<Bpam > | CONFIDENTIAL

GENERAL

« Exact measurements driven development
* Extrapolate carefully!
» Ingestion should be optimized separately from query tuning

* Measure speed after each and every modification
. Hard to realize in practice due to time pressure
* Measure the cumulative effect of multiple changes
. Problematic when the number of options / combinations to try is large
* Long enough ingestion test with large enough data sets (but not too large) on a big enough cluster, but it

should run fast enough ©

AWS

« EBS warmup

» High EBS latency — Significant performance impact on ES

+ Ephemeral (local SSD) storage is much faster for random access

* Fluctuation instance-store SSD write latency with small files < 4096bytes

<Bpam> | CONFIDENTIAL 30

ELASTICSEARCH

* More shards — Better ES cluster utilization — Better scalability
* Replica shards (even with a single instance) — Higher query throughput during a parallel ingestion
* Overloaded ES becomes unreliable (due to internal timeouts and high disk latency)

. Workaround: Catch exception, sleep, retry operation, abort after X attempts
. Limit traffic to ES cluster in REST layer

* Be cautious with configuration tweaks; some may reduce performance!
» Carefully with plugins: Marvel monitoring plugin slows down the ingestion
« Javaclient:

. 1-node cluster = Use TransportClient
. Multi-node cluster = Use NodeClient
(May not work for external clients connecting to an ES cluster behind a firewall!)

 Docker overhead: less than 5%
 Bottleneck:

. Uneven ingestion speed (some threads finishing much earlier than the rest) > Lower throughput
. Not enough time-based shards - Weaker scalability
. Too large shards = High latency

<Bpam> | CONFIDENTIAL 31

WHAT WE LIKED

* Good documentation

* Excellent examples

* Frequent releases

* Large community / forum

+ Easy to scale in cloud

<Bpam > | CONFIDENTIAL

